Rare Earth Complex Initiated Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate

Jun LING, Yi Feng ZHANG*, Zhi Quan SHEN

Institute of Polymer Science, Zhejiang University, Hangzhou 310027

Abstract: The ring opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC) initiated by single component of tris(2,6-di-tert-butyl-4-methylphenoxo) lanthanide ($Ln(OAr)_3$) is reported. The initiators are highly active to the polymerization and give high molecular weight polymers. ¹HNMR spectra and DSC measurement suggest the polymerization is free of decarboxylation. Mechanism study shows that the monomer insertion is *via* the break of acyl-oxygen bond of DTC.

Keywords: Tris(2,6-di-tert-butyl-4-methylphenoxo) lanthanide, 2,2-dimethyltrimethylene carbonate, ring-opening polymerization.

Aliphatic polycarbonate is a series of useful biodegradable materials attracting more interests recently. Poly(2,2-dimethyltrimethylene carbonate) (polyDTC) has been studied for a long time. Polymerization of DTC can be catalyzed by alkyl metals¹, trifluoromethanesulfonic acid and its esters², alcohol/methylaluminum diphenolate system³ and *etc*. Herein tris(2,6-di-tert-butyl-4-methylphenoxo) lanthanides (Ln(OAr)₃, Ln=La, Nd) are firstly applied to initiate the polymerization of DTC. Ln(OAr)₃ is prepared following Hitchcock's method⁴.

As shown in **Table 1**, both $La(OAr)_3$ and $Nd(OAr)_3$ exhibit high activity to initiate the polymerization of DTC yielding high molecular weight polymers compared with the data published.

The polymers are characterized to be free of decarboxylation by ¹HNMR operated at Bruker Avance DMX500 at 500MHz with CDCl₃ as solvent. Only two single peaks obtained on ¹HNMR at 3.967 and 1.001 with ratio of 1.0:1.5 for polyDTC (Run 3 in **Table 1**). PolyDTC's DSC measurements operated on Perkin-Elmer DSC-7 display two peaks at 97.3°C and 119.3°C in the first heating and only one peak at 120.4°C in the

second heating, which is corresponding to literatures¹.

 Table 1
 Ring-opening polymerization of DTC initiated by Ln(OAr)₃^{a)}

Run	Initiator	[DTC] / [Ln(OAr) ₃]	Reaction Time	Yield (%)	${{M_{LS}}^{^{b)}}}$ $ imes 10^{-3}$	$M_n^{c)} \times 10^{-3}$
1	La(OAr) ₃	1000	60 min	98	247	61.2
2	La(OAr) ₃	1700	5.5 hr	60	305	92.0
3	Nd(OAr) ₃	1000	5 min	99	280	85.9
a) Can dition at 15° C in talance (b) Views it and a second				(1) N		

a) Conditions: 15°C in toluene. b) Viscosity measurements¹. c) Measured by GPC.

For polymerization mechanism study, a polyDTC sample of low molecular weight terminated by isopropanol has been prepared and characterized by ¹HNMR. The end unit of isopropyl is found in ¹HNMR spectrum: the multiple peaks of H^a and the double peaks of H^b, which is shown in **Scheme 3**. It's clear that the isopropyl is introduced only at termination stage. Thus, the monomer is believed to insert into living chain *via* the break of acyl-oxygen bond (method a in **Scheme 1**), which differs from the break of alkyl-oxygen bond (method b) by some other catalyst systems. Based on the ratio of the intensities of H^c and H^a in ¹HNMR, the number average molecular weight of polyDTC is calculated as 1,480.

Scheme 3

$$HO-CH_2 - \overset{C}{C} - \overset{C}{C}H_3 - \overset{C}{U} = \begin{pmatrix} \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{c} H_3 & \mathbf{c} \\ \mathbf{c} H_2 - \overset{C}{C} - CH_2 - \mathbf{c} - \overset{C}{C}H_2 - \overset{C}{C} - \overset{C}{C}H_2 - \overset{C}{C}H_2 - \overset{C}{C}H_2 - \overset{C}{C}H_2 - \overset{C}{C}H_3 - \overset{C}{C}$$

 δ (ppm): H^a=1.299(d), H^b=4.86(m), H^c=1.000(s), H^d=3.966(s)

Acknowledgment

This project is supported by The National Science and Technology Committee G1999064801.

References

- 1. H. Keul, R. Bacher, H. Hocker, Makromol. Chem., 1986, 187, 2579.
- 2. H.R. Kricheldorf, R. Dunsing, A.S. Albet, Makromol. Chem., 1987, 188, 2453.
- 3. M. Akatsuka, T. Aida, S. Inoue, Macromolecules., 1995, 28, 1320.
- 4. P.B. Hitchcock, M.F. Lappert, A. Singh, J. Chem. Soc. Chem. Commun., 1983, 1499.

Received June 12, 2000